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ABSTRACT 

It is shown that the smallest eigenvalue of the Hadamard product A X B of two 
positive definite Hermitian matrices is bounded from below by the smallest eigenvalue 
of ABT. 

1. NOTATION AND PRELIMINARIES 

The Hadamard (or Schur) product of two matrices A = (aik), B = ( bik) of 
the same dimensions is the matrix A * B = ( aik bik). If C = ( cik) is a square 
complex matrix, we denote by g(C) the spectral norm (the matrix norm 
generated by the Euclidean vector norm), i.e. fi, where h is the maximum 
eigenvalue of CC* or C*C; N(C) will denote the Frobenius norm of C, i.e. 

iV(C)=~~Jcik~“jl’z=(trCC*)l~z. 
i,k 

If C has all eigenvalues real, m(C) will mean the smallest eigenvalue of C. 
The set of all complex n X n matrices will be denoted by M,. 

2. RESULTS 

We shall prove: 

THEOREM. lf A E M,, B E M, are both positive definite Hermitian, then 

m(A * B)>, m(ABT) 

(and both sides exist). Equality is attained iff ABT is a multiple of 1. 
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Proof. We shall need two well-known results, formulated as lemmas. 

LEMMA 1 [2, p. 421. For any matrices A E M,, B E M,, 

N(AB) Q g(A)@). 

COROLLARY. For any invertible A E M, and any B E M,, 

N(AB)> [g(A-‘)] -‘N(B). 

REMARK. It is easily seen that if B is nonsingular, then equality is 
attained in each of these inequalities iff A is a multiple of a unitary matrix. 

LEMMA 2 (Schur [3]). For any diagonal X E M, and any invertible 

SEM,, 

N(S-‘XS)>, N(X). 

Toretumtotheproof,letusdenotex=(x,,...,X,)T,X=diag{x,}.Then, 
for A, I3 positive definite, 

m( A * B) = min 
i 

t aik?ikbi,xi; x*x = 1 
i,k=l 

= min{tr(AX*BrX); N(X) = l} 

= min{ N”( ( BT)1’zXA1/2); N(X) = l} 

= min{N2((BT)1’2A1/2~A-1/2XA1/2); N(X) = I} 

> min( [g([(BT)1’2A1’z] p’j] -2N2(Ap1/.2XA1/2); N(X) = 1> 

since 

g([(Br)1/2Ar/2] -‘I= [m((Br)1/2A’/2A1/a(Br)1/2)] -1’2 

= [ m( ABE)] -1/2. 
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Let equality be attained. Then (BT)1/2A1/2 is a multiple of a unitary 

matrix, i.e., ABr is a multiple of the identity matrix. However, in this case 

equality is attained in 

m(A*(6)-‘)>l, 

since A * (AT) ~ ’ - Z is positive semidefinite singular [ 11. 
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