A Note on the Hadamard Product of Matrices

Miroslav Fiedler
Czechoslovak Academy of Sciences
Institute of Mathematics
Žitná 25, 11567 Praha 1, Czechoslovakia

Submitted by Richard A. Brualdi

Abstract

It is shown that the smallest eigenvalue of the Hadamard product $A \times B$ of two positive definite Hermitian matrices is bounded from below by the smallest eigenvalue of $A B^{T}$.

1. NOTATION AND PRELIMINARIES

The Hadamard (or Schur) product of two matrices $A=\left(a_{i k}\right), B=\left(b_{i k}\right)$ of the same dimensions is the matrix $A * B=\left(a_{i k} b_{i k}\right)$. If $C=\left(c_{i k}\right)$ is a square complex matrix, we denote by $g(C)$ the spectral norm (the matrix norm generated by the Euclidean vector norm), i.e. $\sqrt{\lambda}$, where λ is the maximum eigenvalue of $C C^{*}$ or $C^{*} C ; N(C)$ will denote the Frobenius norm of C, i.e.

$$
N(C)=\left(\sum_{i, k}\left|c_{i k}\right|^{2}\right)^{1 / 2}=\left(\operatorname{tr} C C^{*}\right)^{1 / 2}
$$

If C has all eigenvalues real, $m(C)$ will mean the smallest eigenvalue of C. The set of all complex $n \times n$ matrices will be denoted by M_{n}.

2. RESULTS

We shall prove:

Theorem. If $A \in M_{n}, B \in M_{n}$ are both positive definite Hermitian, then

$$
m(A * B) \geqslant m\left(A B^{T}\right)
$$

(and both sides exist). Equality is attained iff $A B^{T}$ is a multiple of I.

Proof. We shall need two well-known results, formulated as lemmas.
Lemma 1 [2, p. 42]. For any matrices $A \in M_{n}, B \in M_{n}$,

$$
N(A B) \leqslant g(A) N(B)
$$

Corollary. For any invertible $A \in M_{n}$ and any $B \in M_{n}$,

$$
N(A B) \geqslant\left[g\left(A^{-1}\right)\right]^{-1} N(B)
$$

Remark. It is easily seen that if B is nonsingular, then equality is attained in each of these inequalities iff A is a multiple of a unitary matrix.

Lemma 2 (Schur [3]). For any diagonal $X \in M_{n}$ and any invertible $S \in M_{n}$,

$$
N\left(S^{-1} X S\right) \geqslant N(X)
$$

To return to the proof, let us denote $x=\left(x_{1}, \ldots, x_{n}\right)^{T}, X=\operatorname{diag}\left\{x_{i}\right\}$. Then, for A, B positive definite,

$$
\begin{aligned}
m(A * B) & =\min \left\{\sum_{i, k=1}^{n} a_{i k} \bar{x}_{k} b_{i k} x_{i} ; x^{*} x=1\right\} \\
& =\min \left\{\operatorname{tr}\left(A X^{*} B^{T} X\right) ; N(X)=1\right\} \\
& =\min \left\{N^{2}\left(\left(B^{T}\right)^{1 / 2} X A^{1 / 2}\right) ; N(X)=1\right\} \\
& =\min \left\{N^{2}\left(\left(B^{T}\right)^{1 / 2} A^{1 / 2} \cdot A^{-1 / 2} X A^{1 / 2}\right) ; N(X)=1\right\} \\
& \geqslant \min \left\{\left[g\left(\left[\left(B^{T}\right)^{1 / 2} A^{1 / 2}\right]^{-1}\right)\right]^{-2} N^{2}\left(A^{-1 / 2} X A^{1 / 2}\right) ; N(X)=1\right\} \\
& \geqslant\left[g\left(\left[\left(B^{T}\right)^{1 / 2} A^{1 / 2}\right]^{-1}\right)\right]^{-2}=m\left(A B^{T}\right),
\end{aligned}
$$

since

$$
\begin{aligned}
g\left(\left[\left(B^{T}\right)^{1 / 2} A^{1 / 2}\right]^{-1}\right) & =\left[m\left(\left(B^{T}\right)^{1 / 2} A^{1 / 2} A^{1 / 2}\left(B^{T}\right)^{1 / 2}\right)\right]^{-1 / 2} \\
& =\left[m\left(A B^{T}\right)\right]^{-1 / 2}
\end{aligned}
$$

Let equality be attained. Then $\left(B^{T}\right)^{1 / 2} A^{1 / 2}$ is a multiple of a unitary matrix, i.e., $A B^{T}$ is a multiple of the identity matrix. However, in this case equality is attained in

$$
m\left(A *\left(A^{T}\right)^{-1}\right) \geqslant 1,
$$

since $A *\left(A^{T}\right)^{-1}-I$ is positive semidefinite singular [1].

REFERENCES

1 M. Fiedler, On some properties of Hermitian matrices (in Czech), Mat. Fyz. Časopis SAV 7:168-176 (1957).
2 A. S. Householder, Principles of Numerical Analysis, McGraw-Hill, New York, 1953.

3 J. Schur, Über die charakteristischen Wurzeln einer linearen Substitution mit einer Anwendung auf die Theorie der Integralgleichungen, Math. Ann. 66:488-510 (1909).

Received 8 July 1982

